Search results for "Wreath product"
showing 4 items of 4 documents
Homomorphs and wreath product extensions
1982
A homomorph is a class of (finite soluble) groups closed under the operation Q of taking epimorphic images. (All groups considered in this paper are finite and soluble.) Among those types of homomorphs that have found particular interest in the theory of finite soluble groups are formations and Schunck classes; the reader is referred to (2), § 2, for a definition of those classes. In the present paper we are interested in homomorphs satisfying the following additional closure property:(W0) if A is abelian with elementary Sylow subgroups, then each wreath product A G (with respect to an arbitrary permutation representation of G) with G ∊ is contained in .
Automorphisms of the integral group rings of some wreath products
1991
Finitary Representations and Images of Transitive Finitary Permutation Groups
1999
Abstract We characterize the point stabilizers and kernels of finitary permutation representations of infinite transitive groups of finitary permutations. Moreover, the number of such representations is determined.
Involution codimensions and trace codimensions of matrices are asymptotically equal
1996
We calculate the asymptotic growth oft n (M p (F),*) andc n (M p (F),*), the trace and ordinary *-codimensions ofp×p matrices with involution. To do this we first calculate the asymptotic growth oft n and then show thatc n ⋍t n .